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New Features in 5G and Beyond

5G and newer generation networks offer three new service categories
• Ultra-reliable low-latency communication

▶ Delay-sensitive, mission critical applications (tele-surgery, factory automation)

• Enhanced mobile broadband
▶ High bandwidth and low power consumption requirements (HD video streaming, virtual reality)

• Massive machine-type communication
▶ Massive and unknown number of communicating devices with low power consumption (Internet of Things, smart

cities, smart grids)

Goal: Design coding schemes that are suitable for applications like these, analyze their performance, and
understand the fundamental limits from an information-theoretic perspective.
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1 ms latency ≈ n = 100–200
M. Shirvanimoghaddam et al., “Short Block-Length Codes for Ultra-Reliable Low Latency Communications”, IEEE Commun. Mag., Feb. 2019.
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Channel Coding Problem

Encoder Decoder

• M = codebook size, n = blocklength, ϵ = average error probability, [M ] ≜ {1, . . . ,M}.

• Fundamental limit: M∗(n, ϵ) = maximum achievable codebook size compatible with n and ϵ

• Goal: Compute M∗(n, ϵ) and find the optimal codes that achieve it

• Problem: Exact computation of M∗(n, ϵ) is intractable

• Solution: Derive non-asymptotic bounds

M∗(n, ϵ) ≤ M∗(n, ϵ) ≤ M
∗
(n, ϵ)
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Channel Coding Problem

• Example of non-asymptotic bound [Polyanskiy 10’, random coding union bound]:

M∗(n, ϵ) = max{M : E
[
min{1, (M − 1)P

[
ı(X̄n;Y n) ≥ ı(Xn;Y n)|Xn, Y n]}] ≤ ϵ}

The “solution” is an optimization problem
▶ it does not make clear how M∗(n, ϵ) varies with (PY |X , n, ϵ)

▶ even approximately computing it is nontrivial

• We are interested in asymptotic expansions (Taylor-like expansions of logM∗(n,ϵ)
n

around capacity) that

▶ are tight for (PY |X , n, ϵ) of interest

▶ inform about how M∗(n, ϵ) varies with (PY |X , n, ϵ)

▶ cover a variety of channels

• Analyzing M∗(n, ϵ) as n → ∞ is useful!
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Error Probability Regimes in Channel Coding

As n → ∞, we need to specify how ϵ is related to n

• Central limit theorem (CLT) regime:

ϵ ∈ (0, 1)

logM∗(n, ϵ) = nC −O(
√
n)

C = capacity

• Moderate deviations (MD) regime

ϵ → 0 and − 1

n
log ϵ → 0 logM∗(n, ϵ) = nC − g(n),

√
n ≪ g(n) ≪ n

• Large deviations (LD) regime:

ϵ ≈ e−nE(R)

logM∗(n, ϵ) = nR, R < C

MD regime is relevant to ultra-reliable short-blocklength regime where both ϵ and n are small.

CLT and LD regimes fail to capture this regime.
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Gaussian Approximation

• [Strassen 62’] and [Polyanskiy et al. 10’] show

logM∗(n, ϵ) = nC −
√
nV Q−1(ϵ)︸ ︷︷ ︸

Gaussian approximation

+O(logn)

C = capacity

V = dispersion (a quantity that depends only on PY |X)

Q−1( · ) = inverse of Q( · ), complementary cumulative
distribution function of N (0, 1)
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How do asymptotic expansions for logM∗ perform?

Achievable rates for BSC(0.11)
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Review of Existing Results

Non-Gaussianity:

ζ(n, ϵ) ≜ logM∗(n, ϵ)−
(
nC −

√
nV Q−1(ϵ)

)
︸ ︷︷ ︸

Gaussian approximation

1 CLT: [Polyanskiy et al. 10’] (achievability) and [Tomamichel-Tan 13’] (converse): for
nonsingular channels︸ ︷︷ ︸

excludes a family of erasure channels

ζ(n, ϵ) =
1

2
logn+O(1)

2 CLT: [Moulin 17’]: for nonsingular channels with a regularity condition (excludes the BSC)

ζ(n, ϵ) ≥ 1

2
logn+ SQ−1(ϵ)2 +B + o(1)

ζ(n, ϵ) ≤ 1

2
logn+ SQ−1(ϵ)2 +B + o(1)

where S, S,B, and B depend only on PY |X
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Review of Existing Results

• MD: [Altuğ and Wagner 14’]:

ζ(n, ϵn) = o(
√
nQ−1(ϵn))

Gaussian approximation (without O(logn) term) is valid in the MD regime

• Question: How does the non-Gaussianity ζ(n, ϵn) scale in the MD regime?

Recep Can Yavas Moderate Deviations Analysis of Point-to-Point Channels August 29, 2022 11 / 46



Channel Skewness

• A new operational quantity: Channel skewness

S ≜ lim
ϵ→0

lim inf
n→∞

ζ(n, ϵ)− 1
2
logn

(Q−1(ϵ))2

We are expecting:

logM∗(n, ϵn) = nC −
√
nV Q−1(ϵn) +

1

2
logn+ SQ−1(ϵn)

2 + o(Q−1(ϵn)
2)

• Information density: ı(X;Y ) ≜ log
PY |X (Y |X)

PY (Y )
under some fixed input distribution PX

C = E [ı(X;Y )]
V = Var [ı(X;Y )]

}
under capacity-achieving PX

S = governed by the third central moment of information density
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Our Bounds on the non-Gaussianity in the MD Regime

ϵn in MD regime: − 1
n
log ϵn → 0, ϵn → 0

Theorem 1

MD: for nonsingular discrete memoryless point-to-point channels

ζ(n, ϵn) ≥
1

2
logn+ S Q−1(ϵn)

2 +O

(
Q−1(ϵn)

3

√
n

)
+O(1)

ζ(n, ϵn) ≤
1

2
logn+ S Q−1(ϵn)

2 +O

(
Q−1(ϵn)

3

√
n

)
+O(1)

• S and S are the same as Moulin’s bounds, and our results apply to a wider class of channels

• S and S are easy-to-compute constants that depend only on the channel PY |X and are related to ı(X;Y )

• S and S give lower and upper bounds for channel skewness S

• 1
2
logn+O(1) is no longer accurate because as n → ∞, ϵn → 0 and Q−1(ϵn)

2 → ∞
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Implications of Our Bounds

• Lower bound is achieved using i.i.d. random codewords drawn from a distribution PX that is shifted from
the capacity-achieving P ∗

X

PX = P ∗
X +

Q−1(ϵn)√
n

h

h = a vector that is a function of PY |X

• For Cover-Thomas symmetric channels (all rows (resp. columns) are permutation of each other),
e.g., BSC

S = S = S =
Sk(P ∗

X)
√
V

6
+

1

2

PX = P ∗
X

Sk(P ∗
X) = skewness of ı(X;Y ) at P ∗

X

• For the Gaussian channel, we compute the channel skewness S(P ) exactly as a function of power P
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Comparison of Our Approximation to Existing Work

Achievable rates for BSC(0.11), n = 200.
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Achievability Proof

• We relax the random coding union bound from [Polyanskiy et al. 10’] as

Perror ≤ E
[
min{1, (M − 1)P

[
ı(X̄n;Y n) ≥ ı(Xn;Y n)|Xn, Y n]}]

≤ P [ı(Xn;Y n) < τ ] + (M − 1)P
[
ı(X̄n;Y n) ≥ ı(Xn;Y n) ≥ τ

]
where X̄n is a sample from the codebook that is independent of Y n.

▶ Relaxation of the ML decoder (information density threshold rule + ML rule)

▶ Advantageous because we can analyze each probability term separately
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Achievability Proof

• The optimal allocation of ϵn (equivalently, the optimal τ) is:

P [ı(Xn;Y n) < τ ]︸ ︷︷ ︸
ϵn−ϵn

Q−1(ϵn)√
nV (PX )

+(M − 1)P
[
ı(X̄n;Y n) ≥ ı(Xn;Y n) ≥ τ

]︸ ︷︷ ︸
ϵn

Q−1(ϵn)√
nV (PX )

• P [ı(Xn;Y n) < τ ]: MD regime of probability theory

P
[
ı(X̄n;Y n) ≥ ı(Xn;Y n) ≥ τ

]
: LD regime of probability theory
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Moderate Deviations Theorem

Theorem 2 (Petrov Expansion)

Let X1, . . . , Xn be i.i.d., E [X1] = 0 and Var [X] = σ2. Let x = o(
√
n), and x ≥ 0. Under Cramér’s condition,

i.e., E
[
etX

]
< ∞ in the neighborhood of zero,

P

[
n∑

i=1

Xi ≥
√
nσ2x

]
= Q(x) exp

(
x3Sk(X1)

6
√
n

+O

(
x4

n

))(
1 +O

(
1 + x√

n

))

where Sk(X1) ≜
E[X3

1 ]
σ3 .

• It is an asymptotic equality

• It has a multiplicative correction term to Gaussian approximation Q(x)

• Skewness Sk(X1) dominates the correction term

Recep Can Yavas Moderate Deviations Analysis of Point-to-Point Channels August 29, 2022 18 / 46



Achievability Proof (cont’d)

• P [ı(Xn;Y n) < τ ]: Apply Petrov expansion

P
[
ı(X̄n;Y n) ≥ ı(Xn;Y n) ≥ τ

]
: Apply strong large deviations theorem to get

logM∗ ≥ nI(PX)−
√

nV (PX)Q−1(ϵn) +
1

2
logn

+Q−1(ϵn)
2

(
Sk(PX)

√
V (PX)

6
+

1− η(PX)

2(1 + η(PX))

)
+O

(
Q−1(ϵn)

3

√
n

)
+O(1)

• Take Taylor series expansions around the capacity-achieving P ∗
X .
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Summary of Part 1

1 In the MD regime of channel coding:

▶ We derive easy-to-compute lower and upper bounds to the non-Gaussianity

▶ For symmetric channels, the bounds match each other, and channel skewness S is governed by the skewness of
information density ı(X;Y )

▶ Our MD approximation is more accurate than the CLT approximation of Polyanskiy, especially for lower error
probabilities (e.g., ϵ ≤ 10−6)

2 For some non-symmetric channels, capacity-achieving distribution does not achieve S.

3 We compute the skewness of the Gaussian channel.
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Variable-Length Stop-Feedback (VLSF) Codes

Encoder
Channel

(X ,Y, PY |X) Decoder

W Xt Yt

Stop-feedback ∈ {0, 1}

Ŵ

Variable-length: Decoding occurs at a random time depending on channel outputs

Stop-feedback: 1 bit feedback whenever a decoding attempt is made

Higher reliability: Earlier decoding when the noise is low, later decoding when the
noise is high
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Why Sparse Stop-Feedback?

• VLSF code with L = ∞ decoding times [Polyanskiy et al. 11’], [Burnashev 76’]: Impractical

▶ Transmitter constantly listens to the feedback signal =⇒ High power consumption
▶ Half duplex devices cannot transmit and receive signals at the same time =⇒ Lowers achievable rates due to

round trip delay
▶ Practical codes such has HARQ schemes employ incremental redundancy which has sporadic feedback

• VLSF code with constant L decoding times (this work)

▶ Feedback is sporadic
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No-Feedback Codes vs. VLSF Codes

L = # of available decoding times

What rate can we achieve with several decoding times?
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VLSF Code Definition for L Decoding Times

Encoder
Channel

(X ,Y, PY |X) Decoder

W Xt Yt

Stop-feedback ∈ {0, 1} at n1, . . . , nL

Ŵ

Encoding function ft : [M ] → X :

Xt = ft(W ), t ∈ N+

where W ∼ Unif ([M ]).

Decoding function gt : Yt → [M ]: provides the estimate of W at time
t ∈ {n1, n2, . . . , nL}.
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VLSF Code Definition for L Decoding Times

Encoder
Channel

(X ,Y, PY |X) Decoder

W Xt Yt

Stop-feedback ∈ {0, 1} at n1, . . . , nL

Ŵ

Stopping time: τ ∈ {ni}Li=1 adapted to the filtration generated by {Y ni}Li=1

Decoded message: Ŵ = gτ (Y
τ )

Goal: Find M∗(N,L, ϵ) ≜ max
n1,...,nL

M

s.t. E [τ ] ≤ N

P
[
Ŵ ̸= W

]
≤ ϵ

Recep Can Yavas Variable-Length Sparse Stop-Feedback Codes August 29, 2022 24 / 46



Prior Work

L = ∞:

• [Burnashev 76’]: error exponent lim
ϵ→0

− log ϵ
E[τ ] for the discrete memoryless point-to-point channel as N → ∞

• [Polyanskiy et al. 11’]: VLSF codes in the CLT regime

NC

1− ϵ
− logN +O(1) ≤ logM∗(N,∞, ϵ) ≤ NC

1− ϵ
+O(1)

logM∗(N, 1, ϵ) = NC −
√
NVQ−1(ϵ) +O(logN)

Constant L:

• [Vakilinia et al. 16’]: VLSF codes with L decoding times over the binary-input Gaussian channel

• They estimate the statistics of τ through simulation.

• They do not solve the problem analytically =⇒ no second-order analysis
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Our Result on VLSF Codes with L Decoding Times

Theorem 3 (Achievability)

Fix L ≥ 2, ϵ ∈ (0, 1). For discrete memoryless point-to-point channels, it holds that

logM∗(N,L, ϵ) ≥ N C

1− ϵ
−

√
N log(L−1)(N)

V

1− ϵ
+ o(

√
N)

log(L)( · ) ≜

L times︷ ︸︸ ︷
log(log(. . . (log( · ))))

• Proof analyzes a non-asymptotic bound

• By using refined probability tools and KKT conditions, we approximately optimize the non-asymptotic
bound with respect to the choices of n1, . . . , nL
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Performance of VLSF Codes with L Decoding Times

Figure 1: BSC(0.11), ϵ = 10−3

Diminishing performance improvement as L increases!
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Sequential Hypothesis Tests (SHTs)

• Consider two hypotheses for the distribution of X∞

H0 : X
∞ ∼ P∞

0

H1 : X
∞ ∼ P∞

1

• At each available decoding time, an SHT chooses
between

{Decide H0,Decide H1,Take new sample(s)}

• Wald’s theorem: the optimal SHT is a two-sided
threshold test that uses log-likelihood ratio
(sequential version of Neyman-Pearson lemma)

Take new samples
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Proof of our Achievability Bound on VLSF Codes

• Construct the SHT

H0 : (X,Y ) ∼ PXPY |X =⇒ stop and decode

H1 : (X,Y ) ∼ PXPY =⇒ eliminate from decoding

where PX is capacity-achieving and run it for all M
messages separately

• At time n1 = 0:
▶ With probability p = ϵ− 1√

N logN
, declare H1 for

all m ∈ [M ]
▶ With probability 1− p, pass n1 = 0 without

decoding

• If n1 = 0 is passed, then particularize the SHT to
information-density threshold test:

τm = min{n ∈ {n2, . . . , nL} : ı(Xn(m);Y n) ≥ γ}

0 20 40 60 80 100 120

-80

-60

-40

-20

0

20

40

60

• Analyzing this scheme gives us a
non-asymptotic bound. Then, we optimize
over n1, . . . , nL using KKT conditions.
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Gaussian Point-to-Point Channel

Maximal power constraint:

∥f(m)nℓ∥22 ≤ nℓP ∀ℓ ∈ [L],m ∈ [M ]

Theorem 4

Fix L ≥ 2, P > 0, and ϵ ∈ (0, 1).

logM∗
max (N,L, ϵ, P ) ≥ NC(P )

1− ϵ
−

√
N log(L−1)(N)

V (P )

1− ϵ
+ o(

√
N)

where

C(P ) =
1

2
log(1 + P ), V (P ) =

P (P + 2)

2(P + 1)2
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Encoder Design for the Gaussian Channel

• Encoder: we generate codewords uniformly at random over a restricted subset on nL-dimensional sphere

Figure 2: L = 2,
n1 = 2, n2 − n1 = 1
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Discrete Memoryless Multiple Access Channel (MAC)

Encoder 1

Decoder
Encoder 2

Encoder K

Stop-feedback symbol 0 / 1

• {n1, . . . , nL} = the set of available decoding times

• τ ∈ {n1, . . . , nL} = stopping time
• X[K] ≜ X1, . . . , XK
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VLSF Codes for Discrete Memoryless MACs

Goal: Find max
n1,...,nL

K∑
k=1

logMk

s.t. E [τ ] ≤ N

P
[
(Ŵ1, . . . , ŴK) ̸= (W1, . . . ,WK)

]
≤ ϵ

Theorem 5 (Achievability)

There exists a VLSF code with L decoding times for the discrete memoryless MAC satisfying

K∑
k=1

logMk =
N IK
1− ϵ

−
√

N log(L−1)(N)
VK

1− ϵ
+ o(

√
N)

IK = I(X1, . . . , XK ;Y ), VK = Var [ı(X1, . . . , XK ;Y )]

• Proof: We employ a single information density threshold decoder ı(Xnℓ
[K](m[K]);Y

nℓ) ≥ γ.
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Summary of Part 2

• Second-order achievability bounds for sparse VLSF codes over point-to-point and multiple access channels

• Optimizing the placements of L decoding times is critical to achieve high rates

• A handful of decoding times is almost as good as decoding after every symbol
For the BSC(0.11) at N = 1000 and ϵ = 10−3:

▶ L = 4 achieves 97.0% of the rate achieved by L = ∞

▶ L = 1 achieves 84.2% of the rate achieved by L = ∞
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Rateless RAC (Random Access Channel) Communication that Uses Stop-Feedback

Encoder

Decoder
Encoder

Encoder

Stop-feedback symbol 0 / 1

unknown to other transmitters 
and the receiver

after each

• RAC: A family of MACs up to K transmitters, any a ≤ K transmitters can be active
• Compound channel model: No probability of being active is assigned to transmitters
• Agnostic channel model: Nobody knows who are active
• We extend VLSF codes to the RAC
• Available decoding times = na,1, . . . , na,L for decoding a ∈ [K] messages
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VLSF code for the discrete memoryless RAC

Goal: Find max
na,ℓ : a∈[K],ℓ∈[L]

M

s.t. E [τa] ≤ Na a ∈ [K]

P
[
(Ŵ1, . . . , Ŵa) ̸= (W1, . . . ,Wa)

]
≤ ϵa a ∈ [K]
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RAC Code with L = 1

• Presented in the candidacy talk.

Theorem 6 (Achievability)

Fix an input distribution PX . For a RAC satisfying some mild symmetry conditions, there exists a RAC code with
K transmitters provided that

a logM ≤ NaIa −
√
NaVaQ

−1(ϵa)−
1

2
logNa +O(1) ∀ a ∈ [K]

[Scarlett et al. 15]) for the MAC in operation.
We achieve the same first- and second-order terms as the best-known codes (e.g., [Tan-Kosut 14’],

• Proof: At times n1,1, . . . , nK,1, we use information density threshold rule
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Gaussian RAC with L = 1

• Presented in the candidacy talk.

Theorem 7

There exists a RAC code for the Gaussian RAC with K transmitters provided that

a logM ≤ NaC(aP )−
√

NaVa(P )Q−1(ϵa) +
1

2
logNa +O(1) ∀ a ∈ [K]

where

C(P ) =
1

2
log(1 + P ), Va(P ) =

(2a2 − a)P 2 + 2aP

2(aP + 1)2

• Proof analyzes the error probability of the random code where codewords are generated uniformly on the
restricted power sphere
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VLSF Codes for the RAC

Theorem 8 (Achievability)

Fix K, L ≥ 2, ϵ ∈ (0, 1), and a distribution PX . Under some mild symmetry conditions, there exists a VLSF
code for the discrete memoryless RAC with L decoding times for each a ∈ [K] provided that

a logM ≤ Na Ia
1− ϵa

−
√

Na log(L−1)(Na)
Va

1− ϵa
+ o(

√
Na) ∀ a ∈ [K]

We achieve the same first- and second-order terms as the MAC in operation

• Decoder: At time n0, the decoder applies a multiple hypothesis test to estimate # of active transmitters a

If â is decoder’s estimate, decoder uses a VLSF code for the â-MAC with decoding times {nâ,1, . . . , nâ,L}
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Take-home message: Part 1

• In the low-latency, high-reliability regime, our MD approximation is more accurate than
several state-of-the-art approximations

• In this regime, channel skewness cannot be neglected to get tight approximations
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Take-home message: Part 2

• A handful of decoding times in VLSF codes achieve rates close to those achieved by L = ∞
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Take-home message: Part 3

• For RACs, we achieve the same first- and second-order rates as if the active transmitters are known a priori

• Rateless coding with stop-feedback enables this result
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Future Work and Some Open Problems

• Different ways of limiting the feedback in VLSF codes:

Feedback amount

Feedback frequency

fullcoarsestop

sparse

dense

Burnashev (1976)Polyanskiy (2011)

This work Open Open 

Open 

▶ Coarse feedback: Send Rf bits of feedback at each time
▶ In many applications, we can send bursty feedback
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Future Work and Some Open Problems

• A tight converse for VLSF codes with L decoding times is missing

• Towards this goal, we have a non-asymptotic converse bound based on fundamental limits of SHTs
This bound seems to be very challenging to analyze
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Future Work and Some Open Problems

• Second-order converse for the RAC result:

▶ A second-order converse result for the K-MAC is also a converse result for the RAC

▶ However, it is a long-standing open problem

▶ [Kosut 22’] proves that the second-order term scales as −O(
√
N)

K logM∗ = nKIK −O(
√
nK)
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Thank you!
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