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New Features in 5G and Beyond

5G and newer generation networks offer three new service categories
® Ultra-reliable low-latency communication
> Delay-sensitive, mission critical applications (tele-surgery, factory automation)

® Enhanced mobile broadband
> High bandwidth and low power consumption requirements (HD video streaming, virtual reality)

® Massive machine-type communication

» Massive and unknown number of communicating devices with low power consumption (Internet of Things, smart
cities, smart grids)

Goal: Design coding schemes that are suitable for applications like these, analyze their performance, and
understand the fundamental limits from an information-theoretic perspective.
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Channel Coding Problem

® M = codebook size, n = blocklength, € = average error probability, [M] = {1,..., M}.

® Fundamental limit: M™(n,€) = maximum achievable codebook size compatible with n and €

Goal: | Compute M™(n,€) and find the optimal codes that achieve it‘

Problem: Exact computation of M™(n,€) is intractable

® Solution: Derive non-asymptotic bounds

M*(n,e) < M*(n,e) <M (n,¢)
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Channel Coding Problem

® Example of non-asymptotic bound [Polyanskiy 10’, random coding union bound]:
M*(n,e) = max{M: E [min{1, (M — )P [¢(X™;Y") > o(X";Y")| X", Y"]}] <€}

The “solution” is an optimization problem
> it does not make clear how M*(n,¢) varies with (Py|x,n,€)

> even approximately computing it is nontrivial

log M ™ (n,e) .
&= "% around capacity) that

® We are interested in asymptotic expansions (Taylor-like expansions of

> are tight for (Py|x,n,€) of interest
> inform about how M*(n, ¢) varies with (Py|x,n,¢)

P cover a variety of channels

® Analyzing M*(n,€) as n — oo is useful!
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Error Probability Regimes in Channel Coding

As n — 00, we need to specify how ¢ is related to n

® Central limit theorem (CLT) regime:

e€(0,1)
log M*(n,e) = nC — O(v/n)
C = capacity
® Moderate deviations (MD) regime
1
e — 0 and —Eloge—>0 log M™(n,e) =nC — g(n), Vn<gn)<Kn
® Large deviations (LD) regime:
e~ e MEE

log M*(n,e) =nR, R<C

MD regime is relevant to ultra-reliable short-blocklength regime where both € and n are small.

CLT and LD regimes fail to capture this regime.
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Gaussian Approximation

® [Strassen 62'] and [Polyanskiy et al. 10'] show

log M*(n,€) = nC — VnVQ ' () +O(logn)
—_—

04

0.35
C = capacity 03

025
V' = dispersion (a quantity that depends only on Py |x) "
Q7'(-) = inverse of Q(-), complementary cumulative 015
distribution function of A/(0,1) o

005 /
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How do asymptotic expansions for log

* perform?
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Review of Existing Results

Non-Gaussianity:

¢(n,e) = log M*(n,e) — (nC’ - \/WQfl(e))

Gaussian approximation

® CLT: [Polyanskiy et al. 10'] (achievability) and [Tomamichel-Tan 13'] (converse): for
nonsingular channels

excludes a family of erasure channels

C(n,e) = %logn + O(1)

® CLT: [Moulin 17']: for nonsingular channels with a regularity condition (excludes the BSC)

1

C(n,e) > =~ logn+SQ " (e)* + B+ o(1)

((n,e) < S logn+3Q 7" (e)* + B+o(1)

N = N

where S, S, B, and B depend only on Py x
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Review of Existing Results

® MD: [Altug and Wagner 14']:
¢(n,en) = O(\/ﬁQ_l(en))

Gaussian approximation (without O(logn) term) is valid in the MD regime

® Question: How does the non-Gaussianity {(n,€,) scale in the MD regime?
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Channel Skewness

® A new operational quantity: Channel skewness

R o s C(n,e)félogn
M CRIC)

We are expecting:

log M (1, e0) = nC — VaVQ ™ (en) + 3 logn + 5@ (en)? + 0(@" (en)?)

Py x (Y|X)

¢ Information density: 2(X;Y) £ log Py (V)

under some fixed input distribution Px

C =E[X;Y)

V= Var[((X;Y)] } under capacity-achieving Px

S = governed by the third central moment of information density
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Our Bounds on the non-Gaussianity in the MD Regime

€n in MD regime: —flogen —0,€e, —0

Theorem 1

MD: for nonsingular discrete memoryless point-to-point channels

((n,en) 2 5logn+SQ ™ (en)” +

—
/_\

2
1

Q"
\/ﬁ
C(n,en) < = 10gn+SQ ( ) (Q

® S and S are the same as Moulin's bounds, and our results apply to a wider class of channels
® S and S are easy-to-compute constants that depend only on the channel Py |x and are related to 2(X;Y)

® S and S give lower and upper bounds for channel skewness S

1logn + O(1) is no longer accurate because as n — 00, €, — 0 and Q' (ex)? — oo
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Implications of Our Bounds

® | ower bound is achieved using i.i.d. random codewords drawn from a distribution Px that is shifted from
the capacity-achieving Px
* Qil(eﬂ/)
Px =P ———h
x=ixt g

h = a vector that is a function of Py |x

® For Cover-Thomas symmetric channels (all rows (resp. columns) are permutation of each other),
e.g.,, BSC

— Sk(P3)VV

DO =

Py = P
Sk(P%) = skewness of +(X;Y) at Px

® For the Gaussian channel, we compute the channel skewness S(P) exactly as a function of power P
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Comparison of Our Approximation to Existing Work
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Achievability Proof

® We relax the random coding union bound from [Polyanskiy et al. 10'] as
Perror < E [min{1, (M — P [o(X"; V") > o(X™;Y™)| X", Y"]}]
SPRX™Y™) <7]+ (M —-1DP (X" Y") > (X" Y™) > 7]

where X™ is a sample from the codebook that is independent of Y.

> Relaxation of the ML decoder (information density threshold rule + ML rule)

> Advantageous because we can analyze each probability term separately
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Achievability Proof

® The optimal allocation of €, (equivalently, the optimal 7) is:

PL(X™Y") < 7]+ (M- 1P (X" Y") > (X" Y") > 7]

Q—1(en) Q~L(en)
en—én €
VvV (Px) " /nV(Px)

® Pl(X™;Y™) < 7]: MD regime of probability theory
P [o(X™;Y") >4(X™;Y™) > 7]: LD regime of probability theory
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Moderate Deviations Theorem

Theorem 2 (Petrov Expansion)

Let X1,..., X, beiid, E[X1] =0 and Var [X] = 0®. Let x = o(y/n), and > 0. Under Cramér’s condition,
ie.,, E[e"*] < oo in the neighborhood of zero,

P[ixp\/ﬁx} = Q(z) exp (%4@(%)) (1+O<1\}Lﬁw)>

3
where Sk(X;) £ E[x1] .

o3

® |t is an asymptotic equality
® |t has a multiplicative correction term to Gaussian approximation Q(x)

® Skewness Sk(X) dominates the correction term
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Achievability Proof (cont’d)

® Pli(X™;Y"™) < 7]: Apply Petrov expansion
P [o(X™;Y"™) >4(X™;Y™) > 7]: Apply strong large deviations theorem to get

_ 1
log M* > nI(Px) — /nV(Px)Q " (en) + 2logn

L (SKPOVTPY) | 1—n(Px) Q (en)®
< 6 +zu+m&»>+o( /n

QN en) )+ou>

® Take Taylor series expansions around the capacity-achieving Px.
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Summary of Part 1

® In the MD regime of channel coding:

> We derive easy-to-compute lower and upper bounds to the non-Gaussianity

» For symmetric channels, the bounds match each other, and channel skewness S is governed by the skewness of
information density ¢+(X;Y)

» Our MD approximation is more accurate than the CLT approximation of Polyanskiy, especially for lower error
probabilities (e.g., ¢ < 1076)

® For some non-symmetric channels, capacity-achieving distribution does not achieve S.

® We compute the skewness of the Gaussian channel.
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Variable-Length Stop-Feedback (VLSF) Codes

157 X Y, i

t t w
Channel
—>| Encoder (X, Y, Py x) Decoder

A

Stop-feedback € {0, 1}

Variable-length: Decoding occurs at a random time depending on channel outputs
Stop-feedback: 1 bit feedback whenever a decoding attempt is made

Higher reliability: Earlier decoding when the noise is low, later decoding when the
noise is high
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Why Sparse Stop-Feedback?

® VLSF code with L = oo decoding times [Polyanskiy et al. 11'], [Burnashev 76']: Impractical

Decoding times 0123 T n
Stop-feedback
0000 01

Transmitter <

» Transmitter constantly listens to the feedback signal = High power consumption

» Half duplex devices cannot transmit and receive signals at the same time = Lowers achievable rates due to
round trip delay

> Practical codes such has HARQ schemes employ incremental redundancy which has sporadic feedback

® VLSF code with constant L decoding times (this work)

Decoding times ny T=ng ny ng

Transmitter 0

> Feedback is sporadic
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No-Feedback Codes vs. VLSF Codes

0.55
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Capacity
/

L=0o
(feedback after
every symbol)

L=1

(no feedback)

L L L L L 1 1 1 L I
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Average decoding time N

L = # of available decoding times

What rate can we achieve with several decoding times?
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VLSF Code Definition for L Decoding Times

w Xy Y; w
Encod N Channel Decoder l—
ncoder (X, Y, Py x) ecoder

L

Stop-feedback € {0,1} at n1,...,nz

Encoding function f:: [M] — X:
XtIft(W), tEN+
where W ~ Unif ([M]).

Decoding function g;: Y' — [M]: provides the estimate of W at time
te {711771,2, . ,’I’LL}.

Recep Can Yavas Variable-Length Sparse Stop-Feedback Codes August 29, 2022 24 / 46



VLSF Code Definition for L Decoding Times

w

X, Y, w
Channel
—>| Encoder (X, Y, Py x) Decoder

A

Stop-feedback € {0,1} at n1,...,nz

Stopping time: 7 € {n;}/~, adapted to the filtration generated by {Y "¢}~

Decoded message: W =g, (Y")

Goal: Find M*(N,L,e) 2 max M

N1,..,np

st. E[rf]<N
P[W#W} <e
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L = oo:

—loge
E[r]

® [Burnashev 76']: error exponent liné for the discrete memoryless point-to-point channel as N — oo
€E—>

® [Polyanskiy et al. 11']: VLSF codes in the CLT regime

IN—C —log N + O(1) <log M™*(N, c0,€) < lNiC +0(1)
— —€

log M*(N,1,¢) = NC — VNVQ ' (¢) + O(log N)

Constant L:
® [Vakilinia et al. 16']: VLSF codes with L decoding times over the binary-input Gaussian channel
® They estimate the statistics of 7 through simulation.

® They do not solve the problem analytically = no second-order analysis
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Our Result on VLSF Codes with L Decoding Times

Theorem 3 (Achievability)

Fix L > 2, e € (0,1). For discrete memoryless point-to-point channels, it holds that

2 NC
log M*(N, L,€) > T ¢N10g(L71)(N) +o(VN)

1—¢€

L times

logy(+) £ log(log(. .. (log(-))))

® Proof analyzes a non-asymptotic bound

® By using refined probability tools and KKT conditions, we approximately optimize the non-asymptotic

bound with respect to the choices of ni,...,ng
Variable-Length Sparse Stop-Feedback Codes
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Performance of VLSF Codes with L Decoding Times

Rate (nats/channel use)
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Figure 1: BSC(0.11), e = 1073
Diminishing performance improvement as L increases!
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Sequential Hypothesis Tests (SHTSs)

® Consider two hypotheses for the distribution of X*°

Ho: X ~ P§°
Hy: X ~ P&

® At each available decoding time, an SHT chooses

between

{Decide Ho, Decide H;, Take new sample(s)}

® \Wald's theorem: the optimal SHT is a two-sided
threshold test that uses log-likelihood ratio
(sequential version of Neyman-Pearson lemma)

Recep Can Yavas

Po(X™)

I
% P(x)

2

Hy

Decide Hy at ng

Take new samples

12

Variable-Length Sparse Stop-Feedback Codes

ny

ni nj ny

Hy
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Proof of our Achievability Bound on VLSF Codes

® Construct the SHT

Ho: (X,Y)~ PxPyjx = stop and decode
H,:(X,Y)~ PxPy = eliminate from decoding

where Px is capacity-achieving and run it for all M
messages separately
® At time n; = 0:
> With probability p = ¢ —
all m € [M]

» With probability 1 — p, pass n1 = 0 without
decoding

o X" (m); Y™

ﬁ, declare Hy for

0 2‘0 4‘0 60 80 100 120
® If ny =0 is passed, then particularize the SHT to

information-density threshold test: e Analyzing this scheme gives us a

. n n non-asymptotic bound. Then, we optimize
Tm = min{n € {na,...,nr} : (X" (m);Y") >~} ymp : > OP
over ny,...,nr using KKT conditions.
Variable-Length Sparse Stop-Feedback Codes
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Gaussian Point-to-Point Channel

Maximal power constraint:

[f(m)™ |3 < neP Ve € [L],m e [M]

Theorem 4
Fix L>2, P >0, andee€ (0,1).

log M (¥, L, P) 2 NED) . [viog, ) YD 1 o)
where
op) = %log(l +P), V(P)= %
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Encoder Design for the Gaussian Channel

® Encoder: we generate codewords uniformly at random over a restricted subset on nz-dimensional sphere

08 -,

06

04 -

0.2

02 .
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Discrete Memoryless Multiple Access Channel (MAC)
X1

K
Encoder 2 .
- i H X, Y, PY|X[K]) Decoder

W1 S [Ml]

K
Wy € [My)] Wik € H[Mi]

i=1

Wk € [MK]

Stop-feedback symbol 0/ 1

® Iny,...,np} = the set of available decoding times
{ 1, ’ L} . - g .X[K]éXl,---yXK
® 7€ {ni,...,nL} = stopping time
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VLSF Codes for Discrete Memoryless MACs

K
Goal: Find log M,
in nmax kzzl og My,

st. E[f]<N

]P[(Wl,...,WK);é(Wl,...,WK)] <e

Theorem 5 (Achievability)
There exists a VLSF code with L decoding times for the discrete memoryless MAC satisfying

K

NI V;
> log My, = 1—_12 - \/N 1og(L_1)(N)1fK + o(V'N)
k=1

IK :I(Xl,...,XK;Y), VK :Val‘[l(Xl,...,XK;Y)]

® Proof: We employ a single information density threshold decoder z(X[T%] (mK)); Y™) > .
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Summary of Part 2

® Second-order achievability bounds for sparse VLSF codes over point-to-point and multiple access channels
® Optimizing the placements of L decoding times is critical to achieve high rates

® A handful of decoding times is almost as good as decoding after every symbol
For the BSC(0.11) at N = 1000 and ¢ = 10~3;

> ‘ L = 4 achieves 97.0% of the rate achieved by L = oo

» L =1 achieves 84.2% of the rate achieved by L = co
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Rateless RAC (Random Access Channel) Communication that Uses Stop-Feedback

- Mie [M]
. . ° X1
a active transmitters =
unknown to other transmitters
and the receiver — W, e [M] .
“ (X“,y, PY\XM) Decoder Wiy € [M]*
K — asilent transmitters =
—Wke [MK]
Stop-feedback symbol 0/ 1

after each my

RAC: A family of MACs up to K transmitters, any a < K transmitters can be active
Compound channel model: No probability of being active is assigned to transmitters
Agnostic channel model: Nobody knows who are active

We extend VLSF codes to the RAC

Available decoding times = nq4.1, . ..,nq,r for decoding a € [K] messages
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VLSF code for the discrete memoryless RAC

- [

Decodingtimes — n;;n,, n,, N21 T=ny, Ny

Transmitters <+—— 2 messages are

0 00 0 1 decoded

Goal: Find max
ng o: a€[K],LE[L]
st. Elr] < N, a € [K]

IP’[(Wl,...,Wa);é(Wl,...,Wa)] <eo ac[K]

Recep Can Yavas
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RAC Code with L =1

® Presented in the candidacy talk.

Theorem 6 (Achievability)

Fix an input distribution Px. For a RAC satisfying some mild symmetry conditions, there exists a RAC code with
K transmitters provided that

alog M < NoI, — VN VaQ '(€q) — %log N,+0(1) VaclK]

We achieve the same first- and second-order terms as the best-known codes (e.g., [Tan-Kosut 147],
[Scarlett et al. 15]) for the MAC in operation.

® Proof: At times n11,...,nk,1, we use information density threshold rule
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Gaussian RAC with L =1

® Presented in the candidacy talk.

Theorem 7

There exists a RAC code for the Gaussian RAC with K transmitters provided that
1
alog M < N,C(aP) — \/NoVa(P)Q ' (ea) + FlogNa+0(1)  Vae K]

where

(2a® — a)P? 4 2aP
2(aP + 1)

C(P) = %log(l +P), Vu(P)=

® Proof analyzes the error probability of the random code where codewords are generated uniformly on the
restricted power sphere
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VLSF Codes for the RAC

Theorem 8 (Achievability)

Fix K, L > 2, €€ (0,1), and a distribution Px. Under some mild symmetry conditions, there exists a VLSF
code for the discrete memoryless RAC with L decoding times for each a € [K] provided that

Va
alogM< \/N log 1 _1)( )1_E + o(vV/Na) Va € K]

We achieve the same first- and second-order terms as the MAC in operation ‘

® Decoder: At time ng, the decoder applies a multiple hypothesis test to estimate # of active transmitters a

If @ is decoder’s estimate, decoder uses a VLSF code for the &-MAC with decoding times {na1,...,na,}
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Take-home message: Part 1

® |n the low-latency, high-reliability regime, our MD approximation is more accurate than
several state-of-the-art approximations

® |n this regime, channel skewness cannot be neglected to get tight approximations
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Take-home message: Part 2

® A handful of decoding times in VLSF codes achieve rates close to those achieved by L = co
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Take-home message: Part 3

® For RACs, we achieve the same first- and second-order rates as if the active transmitters are known a priori

® Rateless coding with stop-feedback enables this result
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Future Work and Some Open Problems

® Different ways of limiting the feedback in VLSF codes:

Feedback frequency
Polyanskiy (2011) Burnashev (1976)
dense |[---CQr------Qr-mmmmmmmmimmm e
OO ?
C=o)| | i ;
H H H
Thiswork | Open | Open
sparse |---r--mmQOrmmmm oo O

> Feedback amount
stop  coarse full

» Coarse feedback: Send Ry bits of feedback at each time
> In many applications, we can send bursty feedback
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Future Work and Some Open Problems

® A tight converse for VLSF codes with L decoding times is missing

® Towards this goal, we have a non-asymptotic converse bound based on fundamental limits of SHTs
This bound seems to be very challenging to analyze
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Future Work and Some Open Problems

® Second-order converse for the RAC result:

> A second-order converse result for the K-MAC is also a converse result for the RAC
» However, it is a long-standing open problem

> [Kosut 22'] proves that the second-order term scales as —O(V N)

Klog M =nglx — O(\/TLK)
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Thank you!
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